home *** CD-ROM | disk | FTP | other *** search
Unknown | 1996-10-19 | 5.5 KB |
open in:
MacOS 8.1
|
Win98
|
DOS
view JSON data
|
view as text
This file was not able to be converted.
This format is not currently supported by dexvert.
Confidence | Program | Detection | Match Type | Support
|
---|
1%
| dexvert
| Eclipse Tutorial (other/eclipseTutorial)
| ext
| Unsupported |
1%
| dexvert
| JuggleKrazy Tutorial (other/juggleKrazyTutorial)
| ext
| Unsupported |
100%
| file
| data
| default
| |
100%
| gt2
| Kopftext: 'TUTOR 06'
| default (weak)
|
|
hex view+--------+-------------------------+-------------------------+--------+--------+
|00000000| 54 55 54 4f 52 20 30 36 | 1b 15 00 00 d6 00 00 00 |TUTOR 06|........|
|00000010| 53 65 63 74 69 6f 6e 20 | 38 2e 35 20 20 44 65 4d |Section |8.5 DeM|
|00000020| 6f 69 76 72 65 0d 0a 00 | 46 6f 72 20 6d 6f 72 65 |oivre...|For more|
|00000030| 20 70 72 61 63 74 69 63 | 65 3a 0d 0a 00 0d 0b 00 | practic|e:......|
|00000040| 20 20 20 20 20 10 61 38 | 2d 35 2d 33 0e 78 38 2d | .a8|-5-3.x8-|
|00000050| 35 0e 54 75 74 6f 72 69 | 61 6c 20 45 78 65 72 63 |5.Tutori|al Exerc|
|00000060| 69 73 65 73 0f 0d 0a 00 | 20 20 20 20 20 10 61 38 |ises....| .a8|
|00000070| 2d 35 2d 32 0e 65 38 2d | 35 0e 47 75 69 64 65 64 |-5-2.e8-|5.Guided|
|00000080| 20 45 78 61 6d 70 6c 65 | 73 0f 0d 0a 00 0d 0a 00 | Example|s.......|
|00000090| 54 6f 70 69 63 73 20 66 | 6f 72 20 65 78 70 6c 6f |Topics f|or explo|
|000000a0| 72 61 74 69 6f 6e 3a 0d | 0a 00 0d 0b 00 20 20 20 |ration:.|..... |
|000000b0| 20 20 0e 73 38 2d 35 2d | 31 0e 54 68 65 20 43 6f | .s8-5-|1.The Co|
|000000c0| 6d 70 6c 65 78 20 50 6c | 61 6e 65 0f 0d 0a 00 20 |mplex Pl|ane.... |
|000000d0| 20 20 20 20 0e 73 38 2d | 35 2d 32 0e 44 65 66 69 | .s8-|5-2.Defi|
|000000e0| 6e 69 74 69 6f 6e 20 6f | 66 20 74 68 65 20 41 62 |nition o|f the Ab|
|000000f0| 73 6f 6c 75 74 65 20 56 | 61 6c 75 65 20 6f 66 20 |solute V|alue of |
|00000100| 61 20 43 6f 6d 70 6c 65 | 78 20 4e 75 6d 62 65 72 |a Comple|x Number|
|00000110| 0f 0d 0a 00 20 20 20 20 | 20 0e 73 38 2d 35 2d 33 |.... | .s8-5-3|
|00000120| 0e 54 72 69 67 6f 6e 6f | 6d 65 74 72 69 63 20 46 |.Trigono|metric F|
|00000130| 6f 72 6d 20 6f 66 20 61 | 20 43 6f 6d 70 6c 65 78 |orm of a| Complex|
|00000140| 20 4e 75 6d 62 65 72 0f | 0d 0a 00 20 20 20 20 20 | Number.|... |
|00000150| 0e 73 38 2d 35 2d 34 0e | 50 72 6f 64 75 63 74 20 |.s8-5-4.|Product |
|00000160| 61 6e 64 20 51 75 6f 74 | 69 65 6e 74 20 6f 66 20 |and Quot|ient of |
|00000170| 54 77 6f 20 43 6f 6d 70 | 6c 65 78 20 4e 75 6d 62 |Two Comp|lex Numb|
|00000180| 65 72 73 0f 0d 0a 00 20 | 20 20 20 20 0e 73 38 2d |ers.... | .s8-|
|00000190| 35 2d 35 0e 44 65 4d 6f | 69 76 72 65 27 73 20 54 |5-5.DeMo|ivre's T|
|000001a0| 68 65 6f 72 65 6d 0f 0d | 0a 00 20 20 20 20 20 0e |heorem..|.. .|
|000001b0| 73 38 2d 35 2d 36 0e 44 | 65 66 69 6e 69 74 69 6f |s8-5-6.D|efinitio|
|000001c0| 6e 20 6f 66 20 74 68 65 | 20 11 33 6e 11 31 74 68 |n of the| .3n.1th|
|000001d0| 20 52 6f 6f 74 20 6f 66 | 20 61 20 43 6f 6d 70 6c | Root of| a Compl|
|000001e0| 65 78 20 4e 75 6d 62 65 | 72 0f 0d 0a 00 20 20 20 |ex Numbe|r.... |
|000001f0| 20 20 0e 73 38 2d 35 2d | 37 0e 11 33 6e 11 31 74 | .s8-5-|7..3n.1t|
|00000200| 68 20 52 6f 6f 74 73 20 | 6f 66 20 61 20 43 6f 6d |h Roots |of a Com|
|00000210| 70 6c 65 78 20 4e 75 6d | 62 65 72 0f 0d 0a 00 53 |plex Num|ber....S|
|00000220| 65 63 74 69 6f 6e 20 38 | 2e 35 20 20 44 65 4d 6f |ection 8|.5 DeMo|
|00000230| 69 76 72 65 0d 0b 00 4a | 75 73 74 20 61 73 20 72 |ivre...J|ust as r|
|00000240| 65 61 6c 20 6e 75 6d 62 | 65 72 73 20 63 61 6e 20 |eal numb|ers can |
|00000250| 62 65 20 72 65 70 72 65 | 73 65 6e 74 65 64 20 62 |be repre|sented b|
|00000260| 79 20 70 6f 69 6e 74 73 | 20 6f 6e 20 74 68 65 20 |y points| on the |
|00000270| 72 65 61 6c 20 6e 75 6d | 62 65 72 20 6c 69 6e 65 |real num|ber line|
|00000280| 2c 20 77 65 20 0d 0a 00 | 63 61 6e 20 72 65 70 72 |, we ...|can repr|
|00000290| 65 73 65 6e 74 20 61 20 | 63 6f 6d 70 6c 65 78 20 |esent a |complex |
|000002a0| 6e 75 6d 62 65 72 20 0d | 0a 00 0d 0b 00 20 20 20 |number .|..... |
|000002b0| 20 20 11 33 7a 20 3d 20 | 61 20 2b 20 62 69 0d 0a | .3z = |a + bi..|
|000002c0| 00 0d 0b 00 11 31 61 73 | 20 74 68 65 20 70 6f 69 |.....1as| the poi|
|000002d0| 6e 74 20 11 33 28 61 2c | 20 62 29 20 11 31 69 6e |nt .3(a,| b) .1in|
|000002e0| 20 61 20 63 6f 6f 72 64 | 69 6e 61 74 65 20 70 6c | a coord|inate pl|
|000002f0| 61 6e 65 2c 20 63 61 6c | 6c 65 64 20 74 68 65 20 |ane, cal|led the |
|00000300| 12 31 63 6f 6d 70 6c 65 | 78 20 70 6c 61 6e 65 12 |.1comple|x plane.|
|00000310| 30 2e 20 20 49 6e 20 0d | 0a 00 74 68 69 73 20 63 |0. In .|..this c|
|00000320| 6f 6e 74 65 78 74 2c 20 | 77 65 20 63 61 6c 6c 20 |ontext, |we call |
|00000330| 74 68 65 20 68 6f 72 69 | 7a 6f 6e 74 61 6c 20 61 |the hori|zontal a|
|00000340| 78 69 73 20 74 68 65 20 | 12 31 72 65 61 6c 20 61 |xis the |.1real a|
|00000350| 78 69 73 12 30 20 61 6e | 64 20 74 68 65 20 76 65 |xis.0 an|d the ve|
|00000360| 72 74 69 63 61 6c 20 0d | 0a 00 61 78 69 73 20 74 |rtical .|..axis t|
|00000370| 68 65 20 12 31 69 6d 61 | 67 69 6e 61 72 79 20 61 |he .1ima|ginary a|
|00000380| 78 69 73 12 30 20 61 73 | 20 73 68 6f 77 6e 20 62 |xis.0 as| shown b|
|00000390| 65 6c 6f 77 2e 20 14 74 | 2d 39 2d 34 2d 31 2e 61 |elow. .t|-9-4-1.a|
|000003a0| 74 14 30 14 31 37 14 32 | 38 14 31 30 14 0d 0a 00 |t.0.17.2|8.10....|
|000003b0| 53 65 63 74 69 6f 6e 20 | 38 2e 35 20 20 44 65 4d |Section |8.5 DeM|
|000003c0| 6f 69 76 72 65 0d 0b 00 | 54 68 65 20 12 31 61 62 |oivre...|The .1ab|
|000003d0| 73 6f 6c 75 74 65 20 76 | 61 6c 75 65 12 30 20 6f |solute v|alue.0 o|
|000003e0| 66 20 74 68 65 20 63 6f | 6d 70 6c 65 78 20 6e 75 |f the co|mplex nu|
|000003f0| 6d 62 65 72 20 11 33 7a | 20 3d 20 61 20 2b 20 62 |mber .3z| = a + b|
|00000400| 69 20 11 31 69 73 20 67 | 69 76 65 6e 20 62 79 20 |i .1is g|iven by |
|00000410| 0d 0a 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00000420| 20 20 20 20 20 11 34 67 | 32 32 32 32 32 32 0d 0b | .4g|222222..|
|00000430| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00000440| 20 20 66 20 11 32 32 20 | 20 20 20 32 0d 0b 00 20 | f .22 | 2... |
|00000450| 20 20 20 20 11 33 7c 61 | 20 2b 20 62 69 7c 20 3d | .3|a| + bi| =|
|00000460| 20 11 34 76 20 11 33 61 | 20 20 2b 20 62 20 11 31 | .4v .3a| + b .1|
|00000470| 2e 0d 0a 00 0d 0a 00 47 | 65 6f 6d 65 74 72 69 63 |.......G|eometric|
|00000480| 61 6c 6c 79 2c 20 74 68 | 65 20 61 62 73 6f 6c 75 |ally, th|e absolu|
|00000490| 74 65 20 76 61 6c 75 65 | 20 6f 66 20 74 68 65 20 |te value| of the |
|000004a0| 63 6f 6d 70 6c 65 78 20 | 6e 75 6d 62 65 72 20 11 |complex |number .|
|000004b0| 33 61 20 2b 20 62 69 20 | 11 31 69 73 20 74 68 65 |3a + bi |.1is the|
|000004c0| 20 64 69 73 2d 0d 0a 00 | 74 61 6e 63 65 20 62 65 | dis-...|tance be|
|000004d0| 74 77 65 65 6e 20 74 68 | 65 20 6f 72 69 67 69 6e |tween th|e origin|
|000004e0| 20 28 30 2c 20 30 29 20 | 61 6e 64 20 74 68 65 20 | (0, 0) |and the |
|000004f0| 70 6f 69 6e 74 20 11 33 | 28 61 2c 20 62 29 11 31 |point .3|(a, b).1|
|00000500| 2e 0d 0a 00 0d 0a 00 4e | 6f 74 65 20 74 68 61 74 |.......N|ote that|
|00000510| 20 69 66 20 74 68 65 20 | 63 6f 6d 70 6c 65 78 20 | if the |complex |
|00000520| 6e 75 6d 62 65 72 20 11 | 33 61 20 11 31 2b 20 11 |number .|3a .1+ .|
|00000530| 33 62 69 20 11 31 68 61 | 70 70 65 6e 73 20 74 6f |3bi .1ha|ppens to|
|00000540| 20 62 65 20 61 20 72 65 | 61 6c 20 6e 75 6d 62 65 | be a re|al numbe|
|00000550| 72 20 28 74 68 61 74 20 | 69 73 2c 0d 0a 00 69 66 |r (that |is,...if|
|00000560| 20 11 33 62 20 11 31 3d | 20 30 29 2c 20 74 68 65 | .3b .1=| 0), the|
|00000570| 6e 20 74 68 65 20 64 65 | 66 69 6e 69 74 69 6f 6e |n the de|finition|
|00000580| 20 6f 66 20 74 68 65 20 | 61 62 73 6f 6c 75 74 65 | of the |absolute|
|00000590| 20 76 61 6c 75 65 20 6f | 66 20 61 20 63 6f 6d 70 | value o|f a comp|
|000005a0| 6c 65 78 20 6e 75 6d 62 | 65 72 20 0d 0a 00 61 67 |lex numb|er ...ag|
|000005b0| 72 65 65 73 20 77 69 74 | 68 20 74 68 61 74 20 67 |rees wit|h that g|
|000005c0| 69 76 65 6e 20 66 6f 72 | 20 74 68 65 20 61 62 73 |iven for| the abs|
|000005d0| 6f 6c 75 74 65 20 76 61 | 6c 75 65 20 6f 66 20 61 |olute va|lue of a|
|000005e0| 20 72 65 61 6c 20 6e 75 | 6d 62 65 72 2e 0d 0a 00 | real nu|mber....|
|000005f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000600| 20 20 11 34 67 32 32 32 | 32 32 32 20 20 20 20 20 | .4g222|222 |
|00000610| 67 32 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 20 |g2... | |
|00000620| 20 20 20 20 20 20 66 20 | 11 32 32 20 20 20 20 32 | f |.22 2|
|00000630| 20 20 20 20 11 34 66 20 | 11 32 32 0d 0b 00 20 20 | .4f |.22... |
|00000640| 20 20 20 11 31 7c 11 33 | 61 20 11 31 2b 20 30 11 | .1|.3|a .1+ 0.|
|00000650| 33 69 11 31 7c 20 3d 20 | 11 34 76 20 11 33 61 20 |3i.1| = |.4v .3a |
|00000660| 20 2b 20 11 31 30 20 20 | 3d 20 11 34 76 20 11 33 | + .10 |= .4v .3|
|00000670| 61 20 20 11 31 3d 20 7c | 11 33 61 11 31 7c 0d 0a |a .1= ||.3a.1|..|
|00000680| 00 53 65 63 74 69 6f 6e | 20 38 2e 35 20 20 44 65 |.Section| 8.5 De|
|00000690| 4d 6f 69 76 72 65 0d 0b | 00 4c 65 74 20 11 33 7a |Moivre..|.Let .3z|
|000006a0| 20 3d 20 61 20 2b 20 62 | 69 20 11 31 62 65 20 61 | = a + b|i .1be a|
|000006b0| 20 63 6f 6d 70 6c 65 78 | 20 6e 75 6d 62 65 72 2e | complex| number.|
|000006c0| 20 20 54 68 65 20 12 31 | 74 72 69 67 6f 6e 6f 6d | The .1|trigonom|
|000006d0| 65 74 72 69 63 20 66 6f | 72 6d 12 30 20 6f 66 20 |etric fo|rm.0 of |
|000006e0| 11 33 7a 20 11 31 69 73 | 20 0d 0a 00 0d 0b 00 20 |.3z .1is| ...... |
|000006f0| 20 20 20 20 11 33 7a 20 | 3d 20 72 28 11 31 63 6f | .3z |= r(.1co|
|00000700| 73 20 11 34 74 20 11 31 | 2b 20 11 33 69 20 11 31 |s .4t .1|+ .3i .1|
|00000710| 73 69 6e 20 11 34 74 11 | 31 29 0d 0a 00 20 20 20 |sin .4t.|1)... |
|00000720| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000730| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000740| 20 20 20 11 34 67 32 32 | 32 32 32 32 0d 0b 00 20 | .4g22|2222... |
|00000750| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000760| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000770| 20 20 20 20 66 20 11 32 | 32 20 20 20 20 32 0d 0b | f .2|2 2..|
|00000780| 00 11 31 77 68 65 72 65 | 20 11 33 61 20 3d 20 72 |..1where| .3a = r|
|00000790| 20 11 31 63 6f 73 20 11 | 34 74 11 31 2c 20 11 33 | .1cos .|4t.1, .3|
|000007a0| 62 20 3d 20 72 20 11 31 | 73 69 6e 20 11 34 74 11 |b = r .1|sin .4t.|
|000007b0| 31 2c 20 11 33 72 20 3d | 20 11 34 76 20 11 33 61 |1, .3r =| .4v .3a|
|000007c0| 20 20 2b 20 62 20 20 11 | 31 61 6e 64 20 74 61 6e | + b .|1and tan|
|000007d0| 20 11 34 74 20 11 31 3d | 20 11 33 62 11 31 2f 11 | .4t .1=| .3b.1/.|
|000007e0| 33 61 11 31 2e 20 20 54 | 68 65 20 6e 75 6d 62 65 |3a.1. T|he numbe|
|000007f0| 72 20 11 33 72 20 0d 0a | 00 0d 0b 00 11 31 69 73 |r .3r ..|.....1is|
|00000800| 20 63 61 6c 6c 65 64 20 | 74 68 65 20 12 31 6d 6f | called |the .1mo|
|00000810| 64 75 6c 75 73 12 30 20 | 6f 66 20 11 33 7a 11 31 |dulus.0 |of .3z.1|
|00000820| 2c 20 61 6e 64 20 11 34 | 74 20 11 31 69 73 20 63 |, and .4|t .1is c|
|00000830| 61 6c 6c 65 64 20 61 6e | 20 12 31 61 72 67 75 6d |alled an| .1argum|
|00000840| 65 6e 74 12 30 20 6f 66 | 20 11 33 7a 11 31 2e 0d |ent.0 of| .3z.1..|
|00000850| 0a 00 0d 0a 00 54 68 65 | 20 74 72 69 67 6f 6e 6f |.....The| trigono|
|00000860| 6d 65 74 72 69 63 20 66 | 6f 72 6d 20 6f 66 20 61 |metric f|orm of a|
|00000870| 20 63 6f 6d 70 6c 65 78 | 20 6e 75 6d 62 65 72 20 | complex| number |
|00000880| 69 73 20 61 6c 73 6f 20 | 63 61 6c 6c 65 64 20 74 |is also |called t|
|00000890| 68 65 20 12 31 70 6f 6c | 61 72 20 66 6f 72 6d 12 |he .1pol|ar form.|
|000008a0| 30 2e 20 20 0d 0a 00 53 | 69 6e 63 65 20 74 68 65 |0. ...S|ince the|
|000008b0| 72 65 20 61 72 65 20 69 | 6e 66 69 6e 69 74 65 6c |re are i|nfinitel|
|000008c0| 79 20 6d 61 6e 79 20 63 | 68 6f 69 63 65 73 20 66 |y many c|hoices f|
|000008d0| 6f 72 20 11 34 74 11 31 | 2c 20 74 68 65 20 74 72 |or .4t.1|, the tr|
|000008e0| 69 67 6f 6e 6f 6d 65 74 | 72 69 63 20 66 6f 72 6d |igonomet|ric form|
|000008f0| 20 6f 66 20 61 0d 0a 00 | 63 6f 6d 70 6c 65 78 20 | of a...|complex |
|00000900| 6e 75 6d 62 65 72 20 69 | 73 20 6e 6f 74 20 75 6e |number i|s not un|
|00000910| 69 71 75 65 2e 20 20 4e | 6f 72 6d 61 6c 6c 79 2c |ique. N|ormally,|
|00000920| 20 77 65 20 75 73 65 20 | 11 34 74 20 11 31 76 61 | we use |.4t .1va|
|00000930| 6c 75 65 73 20 69 6e 20 | 74 68 65 20 69 6e 74 65 |lues in |the inte|
|00000940| 72 76 61 6c 0d 0a 00 30 | 20 11 34 3c 20 74 20 11 |rval...0| .4< t .|
|00000950| 31 3c 20 32 11 34 70 11 | 31 2c 20 74 68 6f 75 67 |1< 2.4p.|1, thoug|
|00000960| 68 20 77 65 20 73 6f 6d | 65 74 69 6d 65 73 20 61 |h we som|etimes a|
|00000970| 6c 73 6f 20 75 73 65 20 | 11 34 74 20 11 31 3c 20 |lso use |.4t .1< |
|00000980| 30 2e 0d 0a 00 53 65 63 | 74 69 6f 6e 20 38 2e 35 |0....Sec|tion 8.5|
|00000990| 20 20 44 65 4d 6f 69 76 | 72 65 0d 0b 00 20 20 20 | DeMoiv|re... |
|000009a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 12 31 | | .1|
|000009b0| 50 72 6f 64 75 63 74 20 | 61 6e 64 20 51 75 6f 74 |Product |and Quot|
|000009c0| 69 65 6e 74 20 6f 66 20 | 54 77 6f 20 43 6f 6d 70 |ient of |Two Comp|
|000009d0| 6c 65 78 20 4e 75 6d 62 | 65 72 73 12 30 0d 0a 00 |lex Numb|ers.0...|
|000009e0| 0d 0b 00 4c 65 74 20 11 | 33 7a 20 20 3d 20 72 20 |...Let .|3z = r |
|000009f0| 28 11 31 63 6f 73 20 11 | 34 74 20 20 11 33 2b 20 |(.1cos .|4t .3+ |
|00000a00| 69 20 11 31 73 69 6e 20 | 11 34 74 20 11 31 29 20 |i .1sin |.4t .1) |
|00000a10| 61 6e 64 20 11 33 7a 20 | 20 3d 20 72 20 28 11 31 |and .3z | = r (.1|
|00000a20| 63 6f 73 20 11 34 74 20 | 20 11 33 2b 20 69 20 11 |cos .4t | .3+ i .|
|00000a30| 31 73 69 6e 20 11 34 74 | 20 11 31 29 20 62 65 20 |1sin .4t| .1) be |
|00000a40| 63 6f 6d 70 6c 65 78 20 | 6e 75 6d 2d 0d 0b 00 20 |complex |num-... |
|00000a50| 20 20 20 20 11 32 31 20 | 20 20 20 31 20 20 20 20 | .21 | 1 |
|00000a60| 20 20 31 20 20 20 20 20 | 20 20 20 20 20 31 20 20 | 1 | 1 |
|00000a70| 20 20 20 20 20 32 20 20 | 20 20 32 20 20 20 20 20 | 2 | 2 |
|00000a80| 20 32 20 20 20 20 20 20 | 20 20 20 20 32 0d 0a 00 | 2 | 2...|
|00000a90| 11 31 62 65 72 73 2e 20 | 20 54 68 65 20 12 31 70 |.1bers. | The .1p|
|00000aa0| 72 6f 64 75 63 74 12 30 | 20 6f 66 20 11 33 7a 20 |roduct.0| of .3z |
|00000ab0| 20 11 31 61 6e 64 20 11 | 33 7a 20 20 11 31 69 73 | .1and .|3z .1is|
|00000ac0| 20 67 69 76 65 6e 20 62 | 79 20 0d 0b 00 20 20 20 | given b|y ... |
|00000ad0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000ae0| 20 20 20 20 11 32 31 20 | 20 20 20 20 20 32 0d 0a | .21 | 2..|
|00000af0| 00 0d 0b 00 20 20 20 20 | 20 11 33 7a 20 7a 20 20 |.... | .3z z |
|00000b00| 3d 20 72 20 72 20 5b 11 | 31 63 6f 73 28 11 34 74 |= r r [.|1cos(.4t|
|00000b10| 20 20 11 31 2b 20 11 34 | 74 20 11 31 29 20 2b 20 | .1+ .4|t .1) + |
|00000b20| 11 33 69 20 11 31 73 69 | 6e 28 11 34 74 20 20 11 |.3i .1si|n(.4t .|
|00000b30| 31 2b 20 11 34 74 20 11 | 31 29 5d 0d 0b 00 20 20 |1+ .4t .|1)]... |
|00000b40| 20 20 20 20 11 32 31 20 | 32 20 20 20 20 31 20 32 | .21 |2 1 2|
|00000b50| 20 20 20 20 20 20 31 20 | 20 20 20 32 20 20 20 20 | 1 | 2 |
|00000b60| 20 20 20 20 20 20 20 31 | 20 20 20 20 32 0d 0a 00 | 1| 2...|
|00000b70| 0d 0b 00 11 31 61 6e 64 | 20 74 68 65 20 12 31 71 |....1and| the .1q|
|00000b80| 75 6f 74 69 65 6e 74 12 | 30 20 6f 66 20 11 33 7a |uotient.|0 of .3z|
|00000b90| 20 20 11 31 77 69 74 68 | 20 11 33 7a 20 20 11 31 | .1with| .3z .1|
|00000ba0| 69 73 20 67 69 76 65 6e | 20 62 79 20 0d 0b 00 20 |is given| by ... |
|00000bb0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000bc0| 20 20 20 20 11 32 31 20 | 20 20 20 20 20 20 32 0d | .21 | 2.|
|00000bd0| 0a 00 20 20 20 20 20 11 | 33 7a 20 20 20 20 72 0d |.. .|3z r.|
|00000be0| 0b 00 20 20 20 20 20 20 | 11 32 31 20 20 20 20 31 |.. |.21 1|
|00000bf0| 0d 0b 00 20 20 20 20 20 | 11 34 32 32 20 11 33 3d |... |.422 .3=|
|00000c00| 20 11 34 32 32 11 33 5b | 11 31 63 6f 73 28 11 34 | .422.3[|.1cos(.4|
|00000c10| 74 20 20 11 31 2d 20 11 | 34 74 20 11 31 29 20 2b |t .1- .|4t .1) +|
|00000c20| 20 11 33 69 20 11 31 73 | 69 6e 28 11 34 74 20 20 | .3i .1s|in(.4t |
|00000c30| 11 31 2d 20 11 34 74 20 | 11 31 29 5d 2c 20 11 33 |.1- .4t |.1)], .3|
|00000c40| 7a 20 20 11 34 3d 20 11 | 33 30 2e 0d 0b 00 20 20 |z .4= .|30.... |
|00000c50| 20 20 20 7a 20 20 20 20 | 72 20 20 20 20 20 20 20 | z |r |
|00000c60| 11 32 31 20 20 20 20 32 | 20 20 20 20 20 20 20 20 |.21 2| |
|00000c70| 20 20 20 31 20 20 20 20 | 32 20 20 20 20 20 32 0d | 1 |2 2.|
|00000c80| 0b 00 20 20 20 20 20 20 | 32 20 20 20 20 32 0d 0a |.. |2 2..|
|00000c90| 00 0d 0a 00 11 31 49 6e | 66 6f 72 6d 61 6c 6c 79 |.....1In|formally|
|00000ca0| 2c 20 74 68 69 73 20 72 | 75 6c 65 20 73 61 79 73 |, this r|ule says|
|00000cb0| 20 74 68 61 74 20 74 6f | 20 6d 75 6c 74 69 70 6c | that to| multipl|
|00000cc0| 79 20 74 77 6f 20 63 6f | 6d 70 6c 65 78 20 6e 75 |y two co|mplex nu|
|00000cd0| 6d 62 65 72 73 20 77 65 | 20 6d 75 6c 74 69 70 6c |mbers we| multipl|
|00000ce0| 79 20 0d 0a 00 6d 6f 64 | 75 6c 69 20 61 6e 64 20 |y ...mod|uli and |
|00000cf0| 61 64 64 20 61 72 67 75 | 6d 65 6e 74 73 2c 20 77 |add argu|ments, w|
|00000d00| 68 65 72 65 61 73 20 74 | 6f 20 64 69 76 69 64 65 |hereas t|o divide|
|00000d10| 20 74 77 6f 20 63 6f 6d | 70 6c 65 78 20 6e 75 6d | two com|plex num|
|00000d20| 62 65 72 73 20 77 65 20 | 64 69 76 69 64 65 20 0d |bers we |divide .|
|00000d30| 0a 00 6d 6f 64 75 6c 69 | 20 61 6e 64 20 73 75 62 |..moduli| and sub|
|00000d40| 74 72 61 63 74 20 61 72 | 67 75 6d 65 6e 74 73 2e |tract ar|guments.|
|00000d50| 0d 0a 00 53 65 63 74 69 | 6f 6e 20 39 2e 35 20 20 |...Secti|on 9.5 |
|00000d60| 44 65 4d 6f 69 76 72 65 | 0d 0b 00 20 20 20 20 20 |DeMoivre|... |
|00000d70| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000d80| 20 20 20 20 20 20 20 20 | 20 12 31 44 65 4d 6f 69 | | .1DeMoi|
|00000d90| 76 72 65 27 73 20 54 68 | 65 6f 72 65 6d 12 30 20 |vre's Th|eorem.0 |
|00000da0| 0d 0a 00 49 66 20 11 33 | 7a 20 3d 20 72 28 11 31 |...If .3|z = r(.1|
|00000db0| 63 6f 73 20 11 34 74 20 | 11 31 2b 20 11 33 69 20 |cos .4t |.1+ .3i |
|00000dc0| 11 31 73 69 6e 20 11 34 | 74 11 31 29 20 69 73 20 |.1sin .4|t.1) is |
|00000dd0| 61 20 63 6f 6d 70 6c 65 | 78 20 6e 75 6d 62 65 72 |a comple|x number|
|00000de0| 20 61 6e 64 20 11 33 6e | 20 11 31 69 73 20 61 20 | and .3n| .1is a |
|00000df0| 70 6f 73 69 74 69 76 65 | 20 69 6e 74 65 67 65 72 |positive| integer|
|00000e00| 2c 20 0d 0a 00 74 68 65 | 6e 20 0d 0a 00 20 20 20 |, ...the|n ... |
|00000e10| 20 20 20 11 32 6e 20 20 | 20 20 20 20 20 20 20 20 | .2n | |
|00000e20| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 6e 20 20 | | n |
|00000e30| 20 20 6e 0d 0b 00 20 20 | 20 20 20 11 33 7a 20 20 | n... | .3z |
|00000e40| 3d 20 5b 72 28 11 31 63 | 6f 73 20 11 34 74 20 11 |= [r(.1c|os .4t .|
|00000e50| 31 2b 20 11 33 69 20 11 | 31 73 69 6e 20 11 34 74 |1+ .3i .|1sin .4t|
|00000e60| 11 31 29 5d 20 20 3d 20 | 11 33 72 20 28 11 31 63 |.1)] = |.3r (.1c|
|00000e70| 6f 73 20 11 33 6e 11 34 | 74 20 11 31 2b 20 11 33 |os .3n.4|t .1+ .3|
|00000e80| 69 20 11 31 73 69 6e 20 | 11 33 6e 11 34 74 11 31 |i .1sin |.3n.4t.1|
|00000e90| 29 2e 0d 0a 00 0d 0a 00 | 49 6e 66 6f 72 6d 61 6c |).......|Informal|
|00000ea0| 6c 79 2c 20 77 65 20 73 | 61 79 20 74 68 61 74 20 |ly, we s|ay that |
|00000eb0| 74 6f 20 72 61 69 73 65 | 20 61 20 63 6f 6d 70 6c |to raise| a compl|
|00000ec0| 65 78 20 6e 75 6d 62 65 | 72 20 74 6f 20 74 68 65 |ex numbe|r to the|
|00000ed0| 20 11 33 6e 11 31 74 68 | 20 70 6f 77 65 72 2c 20 | .3n.1th| power, |
|00000ee0| 77 65 20 72 61 69 73 65 | 20 0d 0a 00 74 68 65 20 |we raise| ...the |
|00000ef0| 6d 6f 64 75 6c 75 73 20 | 74 6f 20 74 68 65 20 11 |modulus |to the .|
|00000f00| 33 6e 11 31 74 68 20 70 | 6f 77 65 72 20 61 6e 64 |3n.1th p|ower and|
|00000f10| 20 6d 75 6c 74 69 70 6c | 79 20 74 68 65 20 61 72 | multipl|y the ar|
|00000f20| 67 75 6d 65 6e 74 20 62 | 79 20 11 33 6e 11 31 2e |gument b|y .3n.1.|
|00000f30| 0d 0a 00 53 65 63 74 69 | 6f 6e 20 38 2e 35 20 20 |...Secti|on 8.5 |
|00000f40| 44 65 4d 6f 69 76 72 65 | 0d 0b 00 20 20 20 20 20 |DeMoivre|... |
|00000f50| 20 20 20 20 20 20 20 20 | 20 20 20 12 31 44 65 66 | | .1Def|
|00000f60| 69 6e 69 74 69 6f 6e 20 | 6f 66 20 74 68 65 20 11 |inition |of the .|
|00000f70| 33 6e 11 31 74 68 20 52 | 6f 6f 74 20 6f 66 20 61 |3n.1th R|oot of a|
|00000f80| 20 43 6f 6d 70 6c 65 78 | 20 4e 75 6d 62 65 72 12 | Complex| Number.|
|00000f90| 30 0d 0a 00 0d 0b 00 54 | 68 65 20 63 6f 6d 70 6c |0......T|he compl|
|00000fa0| 65 78 20 6e 75 6d 62 65 | 72 20 11 33 75 20 3d 20 |ex numbe|r .3u = |
|00000fb0| 61 20 2b 20 62 69 20 11 | 31 69 73 20 61 6e 20 12 |a + bi .|1is an .|
|00000fc0| 31 11 33 6e 11 31 74 68 | 20 72 6f 6f 74 12 30 20 |1.3n.1th| root.0 |
|00000fd0| 6f 66 20 74 68 65 20 63 | 6f 6d 70 6c 65 78 20 6e |of the c|omplex n|
|00000fe0| 75 6d 62 65 72 20 11 33 | 7a 20 11 31 69 66 20 0d |umber .3|z .1if .|
|00000ff0| 0a 00 20 20 20 20 20 20 | 20 20 20 20 11 32 6e 20 |.. | .2n |
|00001000| 20 20 20 20 20 20 20 20 | 20 20 6e 0d 0b 00 20 20 | | n... |
|00001010| 20 20 20 11 33 7a 20 3d | 20 75 20 20 3d 20 28 61 | .3z =| u = (a|
|00001020| 20 2b 20 62 69 29 20 2e | 0d 0a 00 0d 0a 00 11 31 | + bi) .|.......1|
|00001030| 4e 6f 74 65 20 74 68 61 | 74 20 74 68 69 73 20 69 |Note tha|t this i|
|00001040| 73 20 74 68 65 20 64 65 | 66 69 6e 69 74 69 6f 6e |s the de|finition|
|00001050| 20 6f 66 20 74 68 65 20 | 11 33 6e 11 31 74 68 20 | of the |.3n.1th |
|00001060| 72 6f 6f 74 20 6f 66 20 | 61 20 63 6f 6d 70 6c 65 |root of |a comple|
|00001070| 78 20 6e 75 6d 62 65 72 | 2c 20 6e 6f 74 20 61 20 |x number|, not a |
|00001080| 0d 0a 00 6d 65 74 68 6f | 64 20 66 6f 72 20 66 69 |...metho|d for fi|
|00001090| 6e 64 69 6e 67 20 69 74 | 2e 0d 0a 00 53 65 63 74 |nding it|....Sect|
|000010a0| 69 6f 6e 20 38 2e 35 20 | 20 44 65 4d 6f 69 76 72 |ion 8.5 | DeMoivr|
|000010b0| 65 0d 0b 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |e... | |
|000010c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 12 31 11 33 | | .1.3|
|000010d0| 6e 11 31 74 68 20 52 6f | 6f 74 73 20 6f 66 20 61 |n.1th Ro|ots of a|
|000010e0| 20 43 6f 6d 70 6c 65 78 | 20 4e 75 6d 62 65 72 12 | Complex| Number.|
|000010f0| 30 0d 0a 00 0d 0b 00 46 | 6f 72 20 61 20 70 6f 73 |0......F|or a pos|
|00001100| 69 74 69 76 65 20 69 6e | 74 65 67 65 72 20 11 33 |itive in|teger .3|
|00001110| 6e 11 31 2c 20 74 68 65 | 20 63 6f 6d 70 6c 65 78 |n.1, the| complex|
|00001120| 20 6e 75 6d 62 65 72 20 | 11 33 7a 20 3d 20 72 28 | number |.3z = r(|
|00001130| 11 31 63 6f 73 20 11 34 | 74 20 11 31 2b 20 11 33 |.1cos .4|t .1+ .3|
|00001140| 69 20 11 31 73 69 6e 20 | 11 34 74 11 31 29 20 68 |i .1sin |.4t.1) h|
|00001150| 61 73 20 0d 0a 00 65 78 | 61 63 74 6c 79 20 11 33 |as ...ex|actly .3|
|00001160| 6e 20 11 31 64 69 73 74 | 69 6e 63 74 20 11 33 6e |n .1dist|inct .3n|
|00001170| 11 31 74 68 20 72 6f 6f | 74 73 20 67 69 76 65 6e |.1th roo|ts given|
|00001180| 20 62 79 20 0d 0a 00 20 | 20 20 20 20 20 20 11 34 | by ... | .4|
|00001190| 67 28 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |g( | |
|000011a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 29 0d 0b | | )..|
|000011b0| 00 20 20 20 20 20 11 32 | 6e 11 34 66 20 21 20 20 |. .2|n.4f ! |
|000011c0| 20 20 74 20 11 31 2b 20 | 32 11 34 70 11 33 6b 20 | t .1+ |2.4p.3k |
|000011d0| 20 20 20 20 20 20 20 20 | 11 34 74 20 11 31 2b 20 | |.4t .1+ |
|000011e0| 32 11 34 70 11 33 6b 11 | 34 21 0d 0b 00 20 20 20 |2.4p.3k.|4!... |
|000011f0| 20 20 76 20 11 33 72 11 | 34 21 11 31 63 6f 73 20 | v .3r.|4!.1cos |
|00001200| 11 34 32 32 32 32 32 32 | 32 20 11 31 2b 20 11 33 |.4222222|2 .1+ .3|
|00001210| 69 20 11 31 73 69 6e 20 | 11 34 32 32 32 32 32 32 |i .1sin |.4222222|
|00001220| 32 21 0d 0b 00 20 20 20 | 20 20 20 20 20 21 20 20 |2!... | ! |
|00001230| 20 20 20 20 20 11 33 6e | 20 20 20 20 20 20 20 20 | .3n| |
|00001240| 20 20 20 20 20 20 20 6e | 20 20 20 11 34 21 0d 0b | n| .4!..|
|00001250| 00 20 20 20 20 20 20 20 | 20 39 20 20 20 20 20 20 |. | 9 |
|00001260| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001270| 20 20 20 20 20 30 0d 0a | 00 11 31 77 68 65 72 65 | 0..|..1where|
|00001280| 20 11 33 6b 20 3d 20 30 | 2c 20 31 2c 20 32 2c 20 | .3k = 0|, 1, 2, |
|00001290| 2e 2e 2e 2c 20 6e 20 2d | 20 31 11 31 2e 0d 0a 00 |..., n -| 1.1....|
|000012a0| 0d 0a 00 54 68 69 73 20 | 74 68 65 6f 72 65 6d 20 |...This |theorem |
|000012b0| 68 61 73 20 61 20 6e 69 | 63 65 20 67 65 6f 6d 65 |has a ni|ce geome|
|000012c0| 74 72 69 63 61 6c 20 69 | 6e 74 65 72 70 72 65 74 |trical i|nterpret|
|000012d0| 61 74 69 6f 6e 2e 20 20 | 45 61 63 68 20 6f 66 20 |ation. |Each of |
|000012e0| 74 68 65 20 11 33 6e 11 | 31 74 68 20 72 6f 6f 74 |the .3n.|1th root|
|000012f0| 73 20 6f 66 20 0d 0a 00 | 20 20 20 20 20 20 20 20 |s of ...| |
|00001300| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001310| 20 20 20 20 20 20 20 20 | 11 34 67 0d 0b 00 20 20 | |.4g... |
|00001320| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001330| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 32 6e 11 | | .2n.|
|00001340| 34 66 0d 0b 00 11 33 7a | 20 11 31 6c 69 65 20 6f |4f....3z| .1lie o|
|00001350| 6e 20 61 20 63 69 72 63 | 6c 65 20 77 69 74 68 20 |n a circ|le with |
|00001360| 72 61 64 69 75 73 20 11 | 34 76 20 11 33 72 20 11 |radius .|4v .3r .|
|00001370| 31 63 65 6e 74 65 72 65 | 64 20 61 74 20 74 68 65 |1centere|d at the|
|00001380| 20 6f 72 69 67 69 6e 2e | 20 20 46 75 72 74 68 65 | origin.| Furthe|
|00001390| 72 6d 6f 72 65 2c 20 74 | 68 65 20 11 33 6e 20 0d |rmore, t|he .3n .|
|000013a0| 0a 00 11 31 72 6f 6f 74 | 73 20 61 72 65 20 65 71 |...1root|s are eq|
|000013b0| 75 61 6c 6c 79 20 73 70 | 61 63 65 64 20 61 6c 6f |ually sp|aced alo|
|000013c0| 6e 67 20 74 68 65 20 63 | 69 72 63 6c 65 20 73 69 |ng the c|ircle si|
|000013d0| 6e 63 65 20 73 75 63 63 | 65 73 73 69 76 65 20 11 |nce succ|essive .|
|000013e0| 33 6e 11 31 74 68 20 72 | 6f 6f 74 73 20 68 61 76 |3n.1th r|oots hav|
|000013f0| 65 20 0d 0a 00 61 72 67 | 75 6d 65 6e 74 73 20 74 |e ...arg|uments t|
|00001400| 68 61 74 20 64 69 66 66 | 65 72 20 62 79 20 32 11 |hat diff|er by 2.|
|00001410| 34 70 11 31 2f 11 33 6e | 11 31 2e 0d 0a 00 0d 0a |4p.1/.3n|.1......|
|00001420| 00 54 68 65 72 65 20 69 | 73 20 61 20 73 70 65 63 |.There i|s a spec|
|00001430| 69 61 6c 20 63 61 73 65 | 20 6f 66 20 74 68 69 73 |ial case| of this|
|00001440| 20 74 68 65 6f 72 65 6d | 20 63 61 6c 6c 65 64 20 | theorem| called |
|00001450| 74 68 65 20 12 31 11 33 | 6e 11 31 74 68 20 72 6f |the .1.3|n.1th ro|
|00001460| 6f 74 73 20 6f 66 20 75 | 6e 69 74 79 12 30 2c 20 |ots of u|nity.0, |
|00001470| 77 68 69 63 68 20 0d 0a | 00 72 65 66 65 72 73 20 |which ..|.refers |
|00001480| 74 6f 20 74 68 65 20 11 | 33 6e 20 11 31 64 69 73 |to the .|3n .1dis|
|00001490| 74 69 6e 63 74 20 11 33 | 6e 11 31 74 68 20 72 6f |tinct .3|n.1th ro|
|000014a0| 6f 74 73 20 6f 66 20 31 | 2e 20 20 4e 6f 74 65 20 |ots of 1|. Note |
|000014b0| 74 68 61 74 20 63 6f 6d | 70 6c 65 78 20 72 6f 6f |that com|plex roo|
|000014c0| 74 73 20 6f 66 20 75 6e | 69 74 79 20 0d 0a 00 28 |ts of un|ity ...(|
|000014d0| 61 6e 64 20 74 68 75 73 | 20 63 6f 6d 70 6c 65 78 |and thus| complex|
|000014e0| 20 72 6f 6f 74 73 20 6f | 66 20 72 65 61 6c 20 6e | roots o|f real n|
|000014f0| 75 6d 62 65 72 73 29 20 | 61 6c 77 61 79 73 20 6f |umbers) |always o|
|00001500| 63 63 75 72 20 69 6e 20 | 63 6f 6e 6a 75 67 61 74 |ccur in |conjugat|
|00001510| 65 20 70 61 69 72 73 2e | 0d 0a 00 25 00 00 00 fa |e pairs.|...%....|
|00001520| 01 00 00 4d 15 00 00 10 | 00 00 00 00 00 00 00 73 |...M....|.......s|
|00001530| 38 2d 35 00 34 02 00 00 | 7c 01 00 00 4d 15 00 00 |8-5.4...||...M...|
|00001540| 1f 02 00 00 00 00 00 00 | 73 38 2d 35 2d 31 00 c5 |........|s8-5-1..|
|00001550| 03 00 00 bc 02 00 00 4d | 15 00 00 b0 03 00 00 00 |.......M|........|
|00001560| 00 00 00 73 38 2d 35 2d | 32 00 96 06 00 00 ef 02 |...s8-5-|2.......|
|00001570| 00 00 4d 15 00 00 81 06 | 00 00 00 00 00 00 73 38 |..M.....|......s8|
|00001580| 2d 35 2d 33 00 9a 09 00 | 00 b9 03 00 00 4d 15 00 |-5-3....|.....M..|
|00001590| 00 85 09 00 00 00 00 00 | 00 73 38 2d 35 2d 34 00 |........|.s8-5-4.|
|000015a0| 68 0d 00 00 cb 01 00 00 | 4d 15 00 00 53 0d 00 00 |h.......|M...S...|
|000015b0| 00 00 00 00 73 38 2d 35 | 2d 35 00 48 0f 00 00 54 |....s8-5|-5.H...T|
|000015c0| 01 00 00 4d 15 00 00 33 | 0f 00 00 00 00 00 00 73 |...M...3|.......s|
|000015d0| 38 2d 35 2d 36 00 b1 10 | 00 00 6a 04 00 00 4d 15 |8-5-6...|..j...M.|
|000015e0| 00 00 9c 10 00 00 00 00 | 00 00 73 38 2d 35 2d 37 |........|..s8-5-7|
|000015f0| 00 | |. | |
+--------+-------------------------+-------------------------+--------+--------+